Защита от электричества

  • автор:

Электробезопасность. Способы защиты от поражения электрическим током

Для обеспечения электробезопасности при монтаже и эксплуатации электроустановок применяют различные способы и средства защиты, выбор которого зависят от ряда факторов, в том числе и от способа электроснабжения.

Для обеспечения защиты от поражения электрическим током в электроустановках должны применяться технические способы и средства защиты.

Выбор того или иного способа или средства защиты (или их сочетаний) в конкретной электроустановке и эффективность его применения зависят от целого ряда факторов, в том числе от:

  • номинального напряжения;
  • рода, формы и частоты тока электроустановки;
  • способа электроснабжения (от стационарной сети, от автономного источника питания электроэнергией);
  • режима нейтрали источника трехфазного тока (средней точки источника постоянного тока) — изолированная нейтраль, заземленная нейтраль;
  • вида исполнения (стационарные, передвижные, переносные);
  • условий внешней среды;
  • схемы возможного включения человека в цепь протекания тока (прямое однофазное, прямое двухфазное прикосновение; включение под напряжение шага);
  • вида работ (монтаж, наладка, испытания) и др.

Кроме того, по принципу действия, все технические способы защиты разделяются на:

  • снижающие до допустимых значений напряжения прикосновения и шага;
  • ограничивающие время воздействия тока на человека;
  • предотвращающих прямое прикосновение к токоведущим частям.

Классификация технических способов и средств защиты от поражения электрическим током в электроустановках приведена на рисунке.

Основными техническими средствами защиты являются:

  • Защитное заземление;
  • Автоматическое отключение питания (зануление);
  • Устройства защитного отключения.

Защитное заземление

Заземление снижает до безопасной величины напряжение относительно земли металлических частей электроустановки, оказавшихся па напряжением при повреждении изоляции.
Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом нетоковедущих частей электроустановки, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (индуктивное влияние соседних токоведущих частей, вынос потенциала, разряд молнии и т. п.). Эквивалентом земли может быть вода реки или моря, каменный уголь в карьерном залегании и т. п.
Электрическое сопротивление такого соединения должно быть минимальным (не более 4 Ом для сетей с напряжением до 1000 В и не более 10 Ом для остальных). При этом корпус электроустановки и обслуживающий ее персонал будут находиться под равными, близкими к нулю, потенциалами даже при пробое изоляции и замыкании фаз на корпус.

Назначение защитного заземления — устранение опасности поражения током в случае прикосновения к корпусу электроустановки и другим нетоковедущим металлическим частям, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам.
Различают два типа заземлений: выносное и контурное.

Выносное заземление характеризуется тем, что его заземлитель (элемент заземляющего устройства, непосредственно контактирующий с землей) вынесен за пределы площадки, на которой установлено оборудование. Таким способом пользуются для заземления оборудования механических и сборочных цехов. Выносное заземление называют также сосредоточенным.
Существенный недостаток выносного заземления – отдаленность заземлителя от защищаемого оборудования, поэтому заземляющие устройства этого типа применяются лишь при малых токах замыкания на землю, в частности в установках до 1 кВ, где потенциал заземлителя не превышает значения допустимого напряжения прикосновения.
Достоинством выносного заземления является возможность выбора места размещения электродов заземлителя с наименьшим сопротивлением грунта (сырой, глинистый, в низинах и т. п.).
Необходимость в устройстве выносного заземления может возникнуть в следующих случаях:

  • при невозможности по каким-либо причинам разместить заземлитель на защищаемой территории;
  • при высоком сопротивлении земли на данной территории (например, песчаный или скалистый грунт) и наличии вне этой территории мест со значительно лучшей проводимостью земли;
  • при рассредоточенном расположении заземляемого оборудования (например, в горных выработках) и т. п.

Контурное заземление состоит из нескольких соединенных заземлителей, размещенных по контуру (периметру) площадки, на которой находится заземляемое оборудование, а также внутри этой площадки. Такой тип заземления применяют в установках выше 1 кВ. Контурное заземление называется также распределенным.
Принцип действия защитного заземления – снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус и другими причинами. Это достигается путем уменьшения потенциала заземленного оборудования (уменьшением сопротивления заземлителя), а также путем выравнивания потенциалов основания, на котором стоит человек, и заземленного оборудования (подъемом потенциала основания, на котором стоит человек, до значения, близкого к значению потенциала заземленного оборудования).

В сетях переменного тока с заземленной нейтралью напряжением до 1 кВ защитное заземление в качестве основной защиты от поражения электрическим током при косвенном прикосновении не применяется, т.к. оно не эффективно .

Область применения защитного заземления:

  • электроустановки напряжением до 1 кВ в трехфазных трехпроводных сетях переменного тока с изолированной нейтралью (система IT);
  • электроустановки напряжением до 1 кВ в однофазных двухпроводных сетях переменного тока изолированных от земли;
  • электроустановки напряжением до 1 кВ в двухпроводных сетях постоянного тока с изолированной средней точкой обмоток источника тока (система IT);
  • электроустановки в сетях напряжением выше 1 кВ переменного и постоянного тока с любым режимом нейтрали или средней точки обмоток источников тока.

Заземление электроприборов. Металлические корпуса электроустановок и приборов (стиральные машины, электроводонагреватели, кондиционеры и т.д.) обязательно должны быть заземлены путем соединения с нулевым проводом электросети. Использование металлических труб и других деталей водопровода, отопительной или канализационной сети для заземления (зануления) запрещено.

Зануление

Зануление — преднамеренное электрическое соединение с глухо заземленной нейтралью трансформатора в трехфазных сетях металлических нетоковедущих частей, которые могут оказаться под напряжением.
В сетях однофазного тока части электроустановки соединяются с глухозаземленным выводом источника тока, а сетях постоянного тока – с заземленной точкой источника.
При занулении нейтраль заземляется у источника питания. Эта система имеет наибольшее распространение. Оно считается основным средством обеспечения электробезопасности в трехфазных сетях с заземленной нейтралью напряжением до 1000 В.

В сети с занулением следует различать нулевые защитный и рабочий проводники.
Для соединения открытых проводящих частей потребителя электроэнергии с глухозаземленной нейтральной точкой источника используется нулевой защитный проводник. Нулевым защитным проводником называется проводник, соединяющий зануляемые части потребителей (приемников) электрической энергии с заземленной нейтралью источника тока. Нулевой рабочий проводник используют для питания током электроприемников и тоже соединяют с заземленной нейтралью, но через предохранитель.
Использовать нулевой рабочий провод в качестве нулевого защитного нельзя, так как при перегорании предохранителя все подсоединенные к нему корпуса могут оказаться под фазным напряжением!
Зануление необходимо для обеспечения защиты от поражения электрическим током при косвенном прикосновении за счет снижения напряжения корпуса относительно земли и быстрого отключения электроустановки от сети.

Область применения зануления:

  • электроустановки напряжением до 1 кВ в трехфазных сетях переменного тока с заземленной нейтралью (система TN – S; обычно это сети 220/127, 380/220, 660/380 В);
  • электроустановки напряжением до 1 кВ в однофазных сетях переменного тока с заземленным выводом;
  • электроустановки напряжением до 1 кВ в сетях постоянного тока с заземленной средней точкой источника.

Принцип действия зануления. При замыкании фазного провода на зануленный корпус электропотребителя образуется цепь тока однофазного короткого замыкания (то есть замыкания между фазным и нулевым защитным проводниками). Ток однофазного короткого замыкания вызывает срабатывание максимальной токовой защиты, в результате чего происходит отключение поврежденной электроустановки от питающей сети. Кроме того, до срабатывания максимальной токовой защиты происходит снижение напряжения поврежденного корпуса относительно земли, что связано с защитным действием повторного заземления нулевого защитного проводника и перераспределением напряжений в сети при протекании тока короткого замыкания.
Следовательно, зануление обеспечивает защиту от поражения электрическим током при замыкании на корпус за счет ограничения времени прохождения тока через тело человека и за счет снижения напряжения прикосновения.

Надежность зануления определяется в основном надежностью нулевого защитного проводника. В связи с этим требуется тщательная прокладка нулевого защитного проводника, чтобы исключить возможность его обрыва. Кроме того, в нулевом защитном проводнике запрещается ставить выключатели, предохранители и другие приборы, способные нарушить его целостность.
При соединении нулевых защитных проводников между собой должен обеспечиваться надежный контакт. Присоединение нулевых защитных проводников к частям электроустановок, подлежащих занулению, осуществляется сваркой или болтовым соединением, причем, значение сопротивления между зануляющим болтом и каждой доступной прикосновению металлической нетоковедущей частью электроустановки, которая может оказаться под напряжением, не должно превышать 0,1 Ом. Присоединение должно быть доступно для осмотра.
Нулевые защитные провода и открыто проложенные нулевые защитные проводники должны иметь отличительную окраску: по зеленому фону желтые полосы.
В процессе эксплуатации зануления сопротивление петли “фаза-нуль” может меняться, следовательно, необходимо периодически контролировать значение этого сопротивления. Измерения сопротивления петли “фаза-нуль” проводят как после окончания монтажных работ, то есть при приемо-сдаточных испытаниях, так и в процессе эксплуатации в сроки, установленные в нормативно технической документации, а также при проведении капитальных ремонтов и реконструкций сети.

Расчет зануления имеет целью определить условия, при которых оно надежно выполняет возложенные на него задачи — быстро отключает поврежденную установку от сети и в то же время обеспечивает безопасность прикосновения человека к зануленному корпусу в аварийный период.

Защитное отключение

Защитным отключением называется автоматическое отключение электроустановок при однофазном прикосновении к частям, находящимся под напряжением, недопустимым для человека, и (или) при возникновении в электроустановке тока утечки (замыкания), превышающего заданные значения.

Назначение защитного отключения – обеспечение электробезопасности, что достигается за счет ограничения времени воздействия опасного тока на человека. Защита осуществляется специальныму стройством защитного отключения (УЗО), которое, обеспечивает электробезопасность при прикосновении человека к токоведущим частям оборудования, позволяет осуществлять постоянный контроль изоляции, отключает установку при замыкании токоведущих частей на землю. Для защиты людей от поражения электрическим током применяются УЗО с током срабатывания не более 30 мА.

Область применения защитного отключения: электроустановки в сетях с любым напряжением и любым режимом нейтрали.
Наибольшее распространение защитное отключение получило в электроустановках, используемых в сетях напряжением до 1 кВ с заземленной или изолированной нейтралью.

Принцип работы УЗО состоит в том, что оно постоянно контролирует входной сигнал и сравнивает его с заданной величиной. Если входной сигнал превышает эту величину, то устройство отключает защищенную электроустановку от сети. В качестве входных сигналов устройств защитного отключения используют различные параметры электрических сетей, которые несут в себе информацию об условиях поражения человека электрическим током.
УЗО реагирует на «ток утечки» и в течение сотых долей секунды отключает электричество, защищая человека от поражения электрическим током, оно улавливает малейшую утечку тока и размыкает контакты.
Конструктивно УЗО бывают двух видов:

  • электронные, зависимые от напряжения питания, их механизм для выполнения операции отключения нуждается в энергии, получаемой либо от контролируемой сети, либо от внешнего источника;
  • электромеханические, независимые от напряжения питания, они дороже электронных УЗО, но обладают большей чувствительностью. Источником энергии, необходимой для функционирования таких УЗО является сам входной сигнал – дифференциальный ток, на который оно реагирует.

Все УЗО по виду входного сигнала классифицируют на несколько типов:

  • реагирующее на напряжение корпуса относительно земли;
  • реагирующее на дифференциальный (остаточный) ток;
  • реагирующее на комбинированный входной сигнал;
  • реагирующее на ток замыкания на землю;
  • реагирующее на оперативный ток (постоянный; переменный 50 Гц);
  • реагирующее на напряжение нулевой последовательности.

Применение УЗО должно осуществляться в соответствии с Правилами устройства электроустановок (ПУЭ).

Средства и меры защиты от поражения электрическим током

Главным защитником от поражения электрическим током выступает знание, которое должно быть заложено в вашей голове. И Вы должны уметь применять эти знания в простых и сложных ситуациях.

Работу в электроустановках может производить специально обученный персонал. То, что человек обучен, можно понять по специальному удостоверению по охране труда. Внутри этого удостоверения будут сроки и объемы проверки специальных знаний по охране труда. Но это на производстве. Где без удостоверения ни наряда, ни инструктажа по тб, ни соответственно работы.

А как определить профпригодность электрика, который например будет проводить вам домашнюю проводку? Если у Вас есть проверенные приемчики на этот счет, напишите их в комментариях, будет интересно послушать ваше мнение.

Теперь непосредственно к теме статьи. Электробезопасность обеспечивается с помощью следующих защитных мер от поражения электрическим током:

  • зануление
  • заземление
  • узо
  • использование малых напряжений. Например, светильников на 12В вместо 220В в особо опасных местах работы
  • контроль сопротивления изоляции. Измеряя мегаомметром сопротивление изоляции мы можем определить ухудшение ее состояния и определить вероятность появления замыкания на землю или тока короткого замыкания
  • компенсация емкостной составляющей тока замыкания на землю в сетях выше 1кВ. Уменьшая емкостную составляющую тока замыкания на землю с помощью индуктивных катушек (дугогасящих), включенных между нейтралью и землей в трехфазных сетях
  • защита от случайного прикосновения. Люди всегда будут нечаянно касаться оголенных проводов и шин, потому что это люди. Они бывают невнимательными, рассеянными. Но число касаний можно уменьшить с помощью защитных средств:
    • защитные крышки, сетки, деревянные ограждения
    • блокировки механические и электрические. Например, стенд для испытания камер элегазовых выключателей на производстве или лаборатория на ТЭЦ, где проверяют электроинструмент. И там и там испытательный пульт и место, где находится источник высокого напряжения разделены как бы на два помещения. И между ними сетка (стекло) и дверь. И есть там блокировка — пока дверь не будет закрыта, напряжение не сможешь подать. Такие способы реально помогают обезопаситься, когда надо испытать например 100 перчаток. В монотонности можно потерять концентрацию и допустить ошибку
    • расположение токоведущих частей на недоступном расстоянии. Хотя встречаются русны, где шины над головой. А с ростом в два метра — стоит случайно поднять руку вверх и привет фаза А, например
    • На фото ниже ситуация получше, но всё равно, опасность так и витает в воздухе.

      Определены следующие допустимые расстояния до токоведущих частей и как видим до 1000В в распредустройствах это расстояние не нормируется:

  • двойная изоляция. Это такая изоляция, когда токоведущая жила помещена в один слой изоляции — основная изоляция. А сверху еще слой дополнительной изоляции. В таком случае, если основная изоляция испортится (а это повреждение не особо можно заметить человеческим зрением), дополнительная изоляция защитит от тока. Провода в электроприборах имеют двойную изоляцию, или электротехнические отвертки.
  • к организационным мероприятиям, обеспечивающим безопасность при проведении работ относится производство работ по наряду, распоряжению или в порядке текущей эксплуатации. В этих документах на производство работ указываются мероприятия по ТБ
  • использование электротехнических защитных средств. Вот и подошли к теме статьи

Электротехнические защитные средства

Вышеописанные защитные меры и мероприятия можно отнести к косвенным, которые установлены и работают всегда, даже, если рядом никого нет. Кроме них существуют и те, которые устанавливаются во время проведения работы и убираются по её окончании.

Основные и дополнительные средства защиты от электрического тока

Изоляция основных защитных средств может выдерживать рабочее напряжение и ими можно касаться токоведущих частей. Изоляция дополнительных защитных средств не рассчитана на рабочее напряжение и используется как дополнительная мера защиты к основному защитному средству.

Средства защиты До 1кВ Выше 1кВ
Основные
  • диэлектрические перчатки
  • изолирующие штанги
  • изолирующие клещи
  • электроизмерительные клещи
  • инструмент с изолирующими рукоятками
  • указатели напряжения
  • изолирующие штанги
  • изолирующие клещи
  • электроизмерительные клещи
  • указатели напряжения
  • средства для ремонтных работ под напряжение выше 1кВ
Дополнительные
  • диэлектрические галоши
  • диэлектрические ковры
  • изолирующие подставки
  • диэлектрические перчатки
  • ковры и боты
  • изолирующие подставки

Кроме вышеописанных существуют ограждающие и предохранительные защитные средства. Ограждающие: щиты, изолирующие накладки, переносные заземления и предупреждающие плакаты.

Предохранительные: каски, очки, рукавицы, противогазы, когти, страховочные канаты, монтерские пояса. А для защиты от электрического поля сверхвысокого напряжения (дуги) используют переносные экранирующие устройства — экраны.

Диэлектрические перчатки в установках до 1кВ применяются как основное защитное средство, а в установках выше 1кВ — как дополнительное. Следует следить за отсутствием надрывов в перчатке, например, надув её и смотря, выходит ли воздух. Также они естественно должны быть испытаны как и другие СИЗ и иметь печать.

Диэлектрические ковры и галоши защищают от шагового напряжения и являются дополнительным СИЗ.

Изолирующие подставки служат не только основным средством доступа невысоких релейщиков в релейные отсеки ячеек в РУ-6кВ, но и дополнительным средством защиты от поражения электрическим током.

Изолирующие штанги в зависимости от класса напряжения имеют различную длину. Они состоят из трех частей: ручка, рабочая часть и изолированная часть.

Переносные заземления устанавливаются при работах на отключенном оборудовании для защиты персонала от последствий возможного включения оборудования.

Накладывается, после проверки отсуствия напряжения. Затем сначала на землю, затем на фазы.

А вот и собственно сами заземления:

Клещи изолирующие и электроизмерительные созданы для разных целей.

Изолирующими извлекают предохранители, например под нагрузкой.

Электроизмерительными измеряют различные величины, например токовыми клещами — величину тока. И измерения силы тока производят без разрыва проводов прямо на работающем оборудовании.

Ну и плакаты. Они бывают разные: запрещающие, разрешающие — почти как в ПДД.

Сохраните в закладки или поделитесь с друзьями

Последние статьи

Самое популярное

Защита от воздействия электрического тока

Для обеспечения электробезопасности необходимо точное соблюдение правил технической эксплуатации электроустановок и проведение мероприятий по защите от электротравматизма.

Мерами и способами обеспечения электробезопасности служат:

  • применение безопасного напряжения;
  • контроль изоляции электрических проводов;
  • исключение случайного прикосновения к токоведущим частям;
  • устройство защитного заземления и зануления;
  • использование средств индивидуальной защиты;
  • соблюдение организационных мер обеспечения электробезопасности.

Одним из аспектов может быть применение безопасного напряжения — 12 и 36 В. Для его получения используют понижающие трансформаторы, которые включают в стандартную сеть с напряжением 220 или 380 В.

Для защиты от случайного прикосновения человека к токоведущим частям электроустановок используют ограждения в виде переносных щитов, стенок, экранов.

Защитное заземление — это преднамеренное электрическое соединение с землей или ее эквивалентом (металлоконструкция зданий и др.) металлических нетоковедущих частей, которые могут оказаться под напряжением. Цель защитного заземления — устранение опасности поражения человека электрическим током в случае прикосновения его к металлическому корпусу электрооборудования, который в результате нарушения изоляции оказался под напряжением.

Зануление — преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Нулевой защитный проводник — это проводник, соединяющий зануляемые части с глухозаземленной нейтральной точкой обмотки источника тока или его эквивалентом.

Защитное отключение — это система защиты, обеспечивающая безопасность путем быстрого автоматического отключения электроустановки при возникновении в ней опасности поражения током. Продолжительность срабатывания защитного отключения составляет 0,1– 0,2 с. Данный способ защиты используют как единственную защиту или в сочетании с защитным заземлением и занулением.

Применение малых напряжений. К малым относят напряжение до 42В, его применяют при работе с переносными электроинструментами, использовании переносных светильников.

Контроль изоляции. Изоляция проводов со временем теряет свои диэлектрические свойства. Поэтому необходимо периодически проводить контроль сопротивления изоляции проводов с целью обеспечения их электробезопасности.

Средства индивидуальной защиты — подразделяются на изолирующие, вспомогательные, ограждающие. Изолирующие защитные средства обеспечивают электрическую изоляцию от токоведущих частей и земли. Они подразделяются на основные и дополнительные. К основным изолирующим средствам в электроустановках до 1000 В относят диэлектрические перчатки, инструмент с изолированными ручками. К дополнительным средствам — диэлектрические галоши, коврики, диэлектрические подставки.

15 Ультрафиолетовое излучение

Как и свет, являющийся видимым, ультрафиолетовое излучение (UVR) представляет собой форму оптического излучения с более короткой длиной волны и большей энергией фотонов (частиц излучения), чем его видимый свет. Большинство источников света испускает также и некоторое ультрафиолетовое излучение. UVR присутствует с солнечном свете, а также испускается большим количеством ультрафиолетовых источников, применяющихся в промышленности, науке и медицине. Рабочие могут сталкиваться с UVR в широком диапазоне разнообразных профессий. В некоторых случаях, при низком уровне освещенности (окружающего света) очень сильные около-ультрафиолетовые источники (так называемого «черного света») могут быть видимыми. Но, обычно, UVR невидимо и должно обнаруживаться по свечению материалов, которые флуоресцируют при освещении их UVR.

Источники ультрафиолетового излучения

Солнечный свет
Наибольшей профессиональной экспозиции UVR подвергаются рабочие на открытом воздухе под действием солнечного света. Энергия излучения солнца значительно ослабляется озоновым слоем Земли, ограничивающим наземное ультрафиолетовое излучение до длины волны более 290-295 nm.
Искусственные источники
Наиболее значительными искусственными источниками ультрафиолетового излучения, оказывающими воздействие на людей, являются:
Дуга промышленной сварки. Наиболее важным источником потенциальной UVR экспозиции является лучистая энергия оборудования для дуговой сварки. Уровни ультрафиолетового излучения вокруг оборудования для дуговой сварки очень высоки и могут вызывать острые поражения глаз и кожи после трех — десяти минут экспозиции при нахождении наблюдателя на близком расстоянии в несколько метров. При проведении сварки обязательна защита глаз и кожи.
Промышленные/рабочие UVR лампы. Многие промышленные и коммерческие процессы, такие как фотохимическое закрепление чернил, красок и пластиков, включают в себя использование ламп, которые испускают мощное излучение в ультрафиолетовом диапазоне. Хотя вероятность их вредного воздействия на человека низка из-за использования экранирования, в некоторых случаях может возникнуть случайная экспозиция.
«Черный свет». Черным светом называют специальные лампы, испускающие энергию преимущественно в ультрафиолетовом диапазоне. Они, обычно, используются как адеструктивный метод испытания флуоресцентных порошков, для определения подлинности банкнот и документов и для специальных эффектов в рекламе и на дискотеках. Эти лампы, воздействуя на человека, не причиняют ему значительного вреда (за исключением случаев фотосенсибилизированной кожи).

Медицинское лечение. Ультрафиолетовые лампы применяются в медицине для разнообразных диагностических и терапевтических целей. Источники UVA, обычно, используются в диагностических программах. UVA воздействие на пациента существенно варьируется в соответствии с типом лечения. Ультрафиолетовые лампы, применяющиеся в дерматологии, должны использоваться персоналом с большой осторожностью.
Бактерицидные UVR лампы. Ультрафиолетовое излучение с длиной волны в диапазоне 250-265 nm является наиболее эффективным для стерилизации и дезинфекции, поскольку такая длина волны соответствует максимуму спектра поглощения РНК. Отводные трубы для ртути низкого давления также часто используются в качестве ультрафиолетового источника, поскольку более 90% излученной ими энергии находится на длине волны 254 nm. Эти лампы часто называют «гермицидными лампами», «бактерицидными лампами» или просто «ультрафиолетовыми лампами». Гермицидные лампы применяются в больницах для борьбы с туберкулезной инфекцией, и в кабинетах микробиологической безопасности для инактивации воздушно-капельных и поверхностных микроорганизмов. Важным фактором является правильная установка лампы и использование защиты для глаз.
Косметический загар. Кушетки для загара находятся в заведениях, где клиенты могут загорать под специальными лампами для загара, излучающими преимущественно в UVA диапазоне, но испускающими также и небольшое количество UVB лучей. Регулярное пользование кушеткой для загара может существенно повлиять на ежегодную экспозицию кожи человека ультрафиолетовому излучению. Более того, персонал, работающий в салонах загара, также может подвергаться низкоуровневому воздействию ультрафиолета. Использование таких защитных средств для глаз, как защитные или солнечные очки, должно быть обязательным для клиентов. В зависимости от устройства солярия его персоналу также могут понадобиться средства защиты глаз.
Общее освещение. Флуоресцентные лампы широко распространены на рабочих местах и дома. Эти лампы испускают небольшие количества ультрафиолетового излучения и дают только несколько процентов от ежегодной экспозиции человека этому диапазону излучений. Вольфрамово-галогенные лампы чаще всего больше применяются дома и на рабочем месте для разнообразного освещения и демонстрационных целей. Неэкранированные галогенные лампы могут излучать UVR на уровнях, достаточных для того, чтобы на близком расстоянии вызвать острое поражение. Оборудование таких ламп надевающимися поверх стеклянными фильтрами должно устранить эту опасность.
Биологические эффекты

Кожа
Эритема
Эритема, или «солнечный ожог», это — покраснение кожи, обычно, проявляющееся через четыре — восемь часов после воздействия ультрафиолетового излучения и постепенно бледнеющее после нескольких дней. Серьезный солнечный ожог может повлечь за собой образование пузырей на коже и ее шелушение

Фотосенсибилизация
Специалисты в области профессиональной гигиены часто сталкиваются с неблагоприятными эффектами, возникающими в результате профессиональной экспозиции ультрафиолету у фотосенсибилизированных рабочих. Применение определенных лекарств может дать фотосенсибилизационный эффект при UVA экспозиции, так же как и местное применение определенных продуктов, включающих некоторые виды парфюмерии, лосьоны для тела и т.д. Реакции на фотосенсибилизирующие агенты могут включать в себя как фотоаллергию (аллергическую реакцию кожи), так и патологическое состояние, обусловленное избыточным ультрафиолетовым излучением, и возникающее после воздействия ультрафиолета солнечного света или промышленных источников (фототоксикоз). (Реакции светочувствительности во время использования оборудования для загара также распространены.)

Поздние эффекты
Хроническая экспозиция солнечному свету, особенно его ультрафиолетовому компоненту, ускоряет старение кожи и увеличивает риск развития рака кожи Несколько эпидемиологических исследований показали, что частота заболевания раком кожи обладает высокой корреляцией с широтой, долготой и составом атмосферы на небе, которые связаны со степенью воздействия ультрафиолетового излучения
Точные количественные взаимоотношения «доза-реакция» для канцерогенеза человеческой кожи еще не установлены, хотя светлокожие люди, особенно кельтского происхождения, гораздо больше подвержены возникновению рака кожи. Тем не менее, необходимо отметить, что ультрафиолетовое воздействие, необходимое для возникновения кожных опухолей в моделях, разработанных для животных, может происходить настолько медленно, что эритема не возникает.
Глаз
Фотокератит и фотоконъюнктивит
Это — острые воспалительные реакции, возникающие в результате воздействия UVB и UVC излучения и проявляющиеся в течение нескольких часов избыточного облучения. Обычно, проходят в течение одного — двух дней.
Ретинальные повреждения от яркого света
Хотя термальные повреждения сетчатки из-за источников света маловероятны, в результате экспозиции источникам, насыщенным синим цветом, может возникнуть фотохимическое повреждение. Оно может выразиться во временном или постоянном снижении зрения. Однако нормальная реакция, вызывающая отвращение к яркому свету, должна предотвратить возникновение такого повреждения, если только не предпринято сознательное усилие по сосредоточению взгляда на источнике яркого света. Вклад ультрафиолетового излучения в возникновение ретинального повреждения, в целом, очень незначителен, поскольку поглощение света хрусталиком ограничивает ретинальную экспозицию.
Хронические эффекты
Долговременная профессиональная экспозиция UVR в течение десятилетий может внести свой вклад в возникновение катаракты и таких, не связанных с глазами дегенеративных эффектов, как старение кожи и рак кожи, связанный с воздействием солнца. Хроническая экспозиция инфракрасному излучению также может увеличить риск катаракты, но при наличии защиты глаз, это маловероятно.
Стандарты безопасности
Для ультрафиолетового излучения были разработаны лимиты профессиональной экспозиции (EL), которые включают в себя кривую спектра воздействия, огибающую пороговые данные, характеризующие самые высокие результаты, полученные при исследовании минимальной эритемы и кератоконъюнктивита. Если принять во внимание ошибки измерения и отклонения в индивидуальных реакциях, то эта кривая незначительно отличается от совокупных пороговых данных и располагается точно под катарактогенными пороговыми данными для UVB.
Профессиональная защита
Профессиональная экспозиция UVR должна быть минимизирована там, где это целесообразно. При использовании искусственных источников, при возможности, приоритет должен отдаваться таким инженерным мерам как фильтрация, экранирование и загораживание. Административные меры контроля, например, ограничение доступа, могут сократить объем требований к персональной защите.
Рабочие, занятые на открытом воздухе, например, сельскохозяйственные рабочие, чернорабочие, строители, рыбаки и т.д., могут минимизировать свой риск экспозиции ультрафиолету солнца ношением приемлемой одежды плотной вязки и, что еще более важно, шляпы с полями для уменьшения экспозиции лица и шеи. Для уменьшения последующей экспозиции на открытую кожу могут наноситься солнцезащитные экраны (например, кремы). Рабочие, занятые на открытом воздухе, должны иметь доступ в тень и получать все необходимые средства защиты, упомянутые выше.
В промышленности существует много источников, способных вызывать острые повреждения глаза за короткое время экспозиции. Во избежание этого используются разнообразные средства защиты глаз со степенью защиты, соответствующей целям ее применения. Средства защиты, предназначенные для промышленного использования, включают в себя сварочные маски (обеспечивающие дополнительно как защиту от интенсивного видимого и инфракрасного излучения, так и защиту лица), лицевые щитки, защитные и поглощающие ультрафиолет очки. В целом, средства защиты глаз, применяющиеся в промышленности, должны плотно прилегать к лицу, обеспечивая, таким образом, отсутствие свободных промежутков, через которые ультрафиолетовое излучение может проникать непосредственно в глаз. Средства защиты также должны быть правильно сконструированы для предотвращения физических увечий.

Целесообразность и выбор защитных средств для глаз зависит от следующих факторов:
· Характеристик интенсивности и спектральной эмиссии источника ультрафиолета.
· Образцов поведения людей вблизи UVR источников (важны расстояние и время экспозиции).
· Свойств проводимости (передаточных свойств) материала, из которого изготовлены средства защиты.
· Конструкции оправы для предотвращения периферийной экспозиции глаза прямому непоглощенному ультрафиолетовому излучению.

16 Статическое электричество

Статическое электричество — явление, связанное со скоплением электрических зарядов на поверхности тела или в объеме вещества и характеризующееся наличием электрического и отсутствием магнитного полей.

Общепринятой теории биологического действия С. э. не существует. Большинство исследователей считают, что в основе влияния С. э. лежит нейрорефлекторный механизм. Действие С. э. выражается в непосредственном раздражении чувствительных нервных окончаний кожи, либо раздражение возникает вторично, за счет поляризации клеточных элементов и изменения ионных отношений в тканях. Раздражение чувствительных нервных окончаний вызывает реакцию всего организма: изменяется кожная чувствительность, стимулируется капиллярный кровоток, меняется сосудистый тонус, наблюдается ряд системных сдвигов, включая изменения в ц.н.с.

Люди, подвергающиеся длительному воздействию С. э., жалуются на повышенную утомляемость, раздражительность, плохой сон и т.п. Объективно отмечаются склонность к артериальной гипертензии, брадикардии, что свидетельствует о спазме и дистонии сосудов. Действие С. э. не специфично и не вызывает определенного заболевания.

Лечение возникающих изменений симптоматическое. Для профилактики неблагоприятного влияния С. э. применяют в основном следующие способы защиты: предупреждение возникновения зарядов С. э. или снижение их генерации; снятие зарядов с наэлектризованных материалов; ограничение времени пребывания человека под воздействием С. э. Первые два способа реализуют с помощью технических средств — антистатических препаратов, нейтрализаторов, экранирующих устройств, антистатической обуви, перчаток, халатов и т.д.

17 ГОРЮЧИЕ ВЕЩЕСТВА (МАТЕРИАЛЫ) – вещества (материалы), способные к взаимодействию с окислителем (кислородом воздуха) в режиме горения. По горючести вещества (материалы) подразделяют на три группы:

  • негорючие вещества и материалы не способные к самостоятельному горению на воздухе;
  • трудногорючие вещества и материалы – способные гореть на воздухе при воздействии дополнительной энергии источника зажигания , но не способные самостоятельно гореть после его удаления;
  • горючие вещества и материалы – способные самостоятельно гореть после воспламенения или самовоспламенения самовозгорания .

Горючие вещества (материалы) – понятие условное, так как в режимах, отличных от стандартной методики, негорючие и трудногорючие вещества и материалы нередко становятся горючими.

Среди горючих веществ имеются вещества (материалы) в различных агрегатном состоянии: газы, пары, жидкости, твёрдые вещества (материалы), аэрозоли. Практически все органические химические вещества относятся к горючим веществам. Среди неорганических химических веществ также имеются горючие вещества (водород, аммиак, гидриды, сульфиды, азиды, фосфиды, аммиакаты различных элементов).

Горючие вещества (материалы) характеризуются показателями пожарной опасности. Введением в состав этих веществ (материалов) различных добавок (промоторов, антипиренов, ингибиторов) можно изменять в ту или иную сторону показатели их пожарной опасности.

Основные меры защиты от поражения электрическим током

Непроизвольный контакт человека с электрическим током, превышающим 50 мА, создает реальную угрозу его жизни и здоровью. Поражаются мышечные ткани, органы дыхания, и оказывается неблагоприятное воздействие на сердечную систему. Чтобы ситуация не стала критической для жизни человека, необходимо быстро отключить подачу электрического тока от электроподающей сети. Для предотвращения подобной аварийной ситуации рекомендуется провести профилактические защитные мероприятия от поражения электрическим током.

Открытые токоприемники представляют серьезную угрозу жизни человека

Требования и нормативы

В 2002 году в нашей стране введены государственные стандарты по защите человека от поражения электротоком (ГОСТ Р. МЭК 61140 – 2000), которые полностью адаптированы под существующие международные нормы. На основании этого базового документа разрабатываются нормативные документы и профильные меры безопасности для каждой отрасли народного хозяйства. Действие положения распространяется на электрооборудование, работающего с напряжением до 1000 А переменного электрического тока, а для постоянного – до 1500 А.Область применения норм – электрические установки и системы.

В этих нормах заложены основные требования по обеспечению предотвращения аварий от поражения электричеством:

  • Недоступность к токоведущим частям электрооборудования;
  • Обязательная изоляция в один или два слоя;
  • Корпусы электрооборудования и силовых установок должны быть заземлены и в обязательном порядке иметь нулевую фазу;
  • Обеспечение надежными и быстродействующими автоматами и устройствами защитного отключения;
  • Создание линий пониженного напряжения (от 42 В и ниже) для электропитания мобильных токоприемников;
  • Устройство защитных разделительных электрических цепей;
  • Установка блокировочных устройств, предупредительной сигнализации, обеспечение электрооборудования защитными надписями и наглядными предупредительными плакатами;
  • Применение защитных приспособлений и индивидуальных средств защиты;
  • Своевременное проведение плановых технических осмотров и профилактических ремонтов эксплуатируемого электрического оборудования, сетей и установок;
  • Организация специального инструктажа персонала по технике безопасности, плановая аттестатация рабочих мест, экзамены на право получения допуска работы для объектов повышенной категории опасности.

Технические термины основных нормативных документов дополняются уточняющими пояснениями:

  1. «Прямой контакт» наступает в случае непосредственного прикосновения человека к электрическому проводнику под напряжением. Поражение электричеством может наступить и в случае пробоя изоляции;
  2. «Изоляция». Под таким названием понимается не только защитная оболочка провода из полимерных материалов. Изоляция может иметь вид жидкости как, например, масло в трансформаторе, или быть газообразной как промежуток воздуха. Двойная или усиленная изоляция состоит из двух частей, и при испытании каждую из них тестируют отдельно, что позволяет своевременно обнаружить повреждение защитного слоя;
  3. «Средства безопасности». Кроме изоляции, к защитным средствам можно отнести конструктивные элементы: полы, наружные и внутренние стены, различные ограждения, закрывающие несанкционированный доступ к токоведущим элементам.

Важно! Качественная система безопасности должна строиться на основном принципе: токоведущие элементы не должны быть опасными для жизни человека.

Основные мероприятия по безопасности

Проведение ремонтных электроработ требует большой внимательности и ответственности

Для исключения непредвиденного или косвенного контакта человека с токоведущими частями необходимо обеспечить основные меры защиты от поражения электрическим током. К ним относятся:

  • Обязательное наличие твердой изоляции, предотвращающей непосредственный контакт с оголенными элементами электрических проводников;
  • Ограничительный барьер для доступа посторонних лиц к электросиловому оборудованию и электроустановкам. Защитное ограждение должно быть прочным и оснащено запорными элементами и кодовыми замками;
  • Для исключения физического контакта при осмотре необходимо устанавливать токоведущие части на значительном удалении друг от друга;
  • Использование для электроосвещения силовых электроустановок осветительных приборов, работающих на низком напряжении от 12 до 36 Вт. Такое же напряжение рекомендовано для электропривода необходимого электроинструмента. Для этой цели применяются понижающие трансформаторы с заземлением их вторичной обмотки.

Кроме основного перечня защитных мер безопасности, во избежание поражения человека электричеством применяются система выравнивания электрических потенциалов и автоматическое устройство отключения (УЗО).

Устройство автоматического отключения (УЗО)

Комплекс защитных мероприятий

Основные защитные профилактические мероприятия от возможного поражения электрическим током условно подразделяются на три группы:

  • Организационные мероприятия;
  • Технические меры;
  • Применение индивидуальных защитных средств.

Профилактические меры и средства защиты являются приоритетными направлениями защитных мероприятий по предотвращению возможного поражения человека электротоком.

Совокупность всего комплекса защитных мероприятий направлена на недопущение возникновения аварийных ситуаций, которые могут закончиться электротравмой и несут непосредственную угрозу жизни человека.

Набор специального ремонтного инструмента с изолирующими рукоятками

Организационные мероприятия

Важной составляющей частью мер безопасности от поражения током считается организационная профилактическая работа:

  • Подбор квалифицированного персонала сотрудников для обслуживания электроустановок и силового оборудования. Запрещено использовать необученных лиц и непрошедших обязательный медосмотр, разрешающий допуск к электроработам с повышенной категорией опасности. К работе не допускаются лица, не достигшие 18 лет;
  • Проведение своевременных инструктажей по технике безопасности, специального технического обучения по работе в условиях повышенной электрической опасности, подготовка и сдача экзаменов по технике безопасности при работе с электроустановками;
  • Проведение ознакомительных и наглядных инструктажей по первоочередным действиям при поражении электрическим током;
  • Назначение ответственных лиц за электробезопасность;
  • Ведение специальных журналов ежедневной сдачи и приемки контроля работы электрооборудования и силовых установок;
  • Периодические осмотры, измерения и испытания электрооборудования.

Нормами предусмотрен регламент профилактического измерения оборудования, работающего в сухом помещении (один раз в два года), а в сырых – каждый год. Предельно допустимое значение изоляции должно быть в пределе 0,5 Мом для двух изолирующих слоев и до 2 Мом при усиленной изоляции. Если выявлены несоответствия установленным требованиям, то в обязательном порядке рекомендуется провести ремонтные работы.

Защитные ограждения разрешается снимать только специалистам, имеющим соответствующие навыки. Их квалификация в обязательном порядке подтверждается удостоверением с информацией о группе допуска.

Примеры предупредительных плакатов

Технические меры

К техническим мерам безопасности по недопущению аварийных ситуаций, способных вызвать поражение электрическим током, можно отнести следующие мероприятия:

  1. Обязательные применения защитных устройств в виде предохранителей, реле защиты и других средств, которые предохраняют электроустановки и оборудование в момент пиковых нагрузок и защищают от короткого замыкания;
  2. Установка электрооборудования в недоступных местах (на высоте более 2 м) и использование защитных ограждений, исключающих контакт токоведущих частей с людьми и животными;
  3. Обязательное использование заземляющих контуров и зануления электроустановок;
  4. Дополнительная изоляция электрооборудования от корпусов рабочих устройств и машин.

Устройство диэлектрических рабочих настилов и специальных изолирующих площадок также можно отнести к техническим защитным мероприятиям.

Электроработы проводятся с приборами обнаружения электрического тока

Индивидуальные средства защиты

Индивидуальные средства защиты от поражения электрическим током: коврики и боты

Средства защиты от поражения электрическим током подразделяются на индивидуальные основные, дополнительные и вспомогательные.

Основные средства защиты имеют специальную изоляцию, используются при длительном контакте человека с токоведущими частями электрооборудования с рабочим напряжением:

  1. Для работы под напряжением до 1000 Вт – специальные диэлектрические перчатки, изолирующие штанги, ремонтный инструмент с рукоятками, покрытыми изолирующим составом;
  2. Специальные определители напряжения.

Применение изолирующих средств защиты исключает повреждение человека электрическим током.

Дополнительные средства защиты предназначены для усиления основных изолирующих элементов:

  • Для работы в электроустановках до 1000 В применяются диэлектрические специальные калоши, коврики, площадки и подставки;
  • Свыше 1000 В – диэлектрические защитные боты, коврики, подставки, перчатки.

Если при проведении ремонтных или профилактических работ в зоне работающих электроустановок или оборудования отсутствует хоть один компонент дополнительной индивидуальной защиты, то в этом случае запрещается использование основных средств.

Основные мероприятия по защите от поражения электрическим током нацелены на создание безопасных условий для человека при работе действующих и эксплуатируемых электрических машин, установок и оборудования.

Способы защиты от электрического тока

Причины поражения электрическим током. Способы защиты от электрического тока.

Причины поражения электрическим током:

— случайное прикосновение к токоведущим частям;

— появление напряжения на отключенных токоведущих частях (при ремонте оборудования);

— появление напряжения на корпусе электрооборудования;

— напряжение шага (при растекании тока в случае падения провода на землю).

Защита человека от поражения электрическим током

Электрический ток является распространенным поражающим фактором на производстве и в быту из-за широкого распространения электрических установок, приборов и агрегатов. При работе с ними необходимо соблюдать требования электробезопасности.

Электробезопасность – это система организационных и технических мероприятий, а также средств, обеспечивающих защиту людей от вредного и опасного воздействия:

— электрического тока,

— электрической дуги,

— электромагнитного поля и статического электричества.

Безопасность при работе с электроустановками обеспечивается применением различных технических и организационных мер. Они регламентированы следующими нормативными документами:

— Правила устройства электроустановок (ПУЭ);

— Правила эксплуатации электроустановок потребителей (ПЭ);

— Правила техники безопасности при эксплуатации электроустановок потребителей (ПТБ);

— ГОСТ 12.1.ХХХ — ХХ — Электробезопасность.

Технические средства защиты от поражения электрическим током делятся на коллективные средства и индивидуальные средства.

К средствам коллективной защиты от электрического тока относят:

1. Защитное заземление.

2. Зануление.

3. Защитное отключение.

4. Применение малых напряжений.

5. Изоляция токопроводящих частей.

6. Оградительные устройства.

7. Сигнализация, блокировка, знаки безопасности, плакаты.

Защитное заземление – это преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих частей электрооборудования, которые в обычном состоянии не находятся под напряжением, но которые могут оказаться под напряжением в результате повреждения изоляции. Принцип действия защитного заземления – снижение до безопасных значений напряжений прикосновения и шага, обусловленных «замыканием на корпус».

Занулением называется присоединение к неоднократно заземленному нулевому проводу питающей сети корпусов и других конструктивных металлических частей электрооборудования, которые нормально не находятся под напряжением, но вследствие повреждения изоляции могут оказаться под напряжением. Принцип действия зануления — превращение пробоя на корпус в однофазное короткое замыкание (т.е. замыкание между фазным и нулевым проводами) с целью создания большого тока, способного обеспечить срабатывание защиты и тем самым отключить автоматически поврежденную установку из сети.

Кроме перечисленных СКЗ, применяются СИЗ (инструменты с изолированными рукоятками, коврики, токоизмерительные клещи, обувь и т.п.).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *